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TRANSPORT PROPERTIES AT HIGH TEMPERATURES OF 


C02-N2-02-Ar GAS MIXTURES FOR PLANETARY 


ENTRY APPLICATIONS 


By J e r r y  S. Lee* and Percy J. Bobbitt 

Langley Research Center 


SUMMARY 

The equations and assumptions employed to compute the viscosity, thermal conduc- , 

tivity, and Prandtl number for high-temperature gas mixtures which, at low tempera­
tures,  may be composed of arbitrary percentages of C02, N2, 0 2 ,  and Ar a r e  presented. 
Ionization phenomena are not considered; hence, the results a r e  limited to pressures  and 
temperatures where dissociation reactions dominate. Numerical results are obtained for 
three different "atmospheric" gas mixtures: air, 100 percent C02, and a mixture of 
43 percent C02, 25 percent N2, and 32 percent Ar (by vol.). Comparisons of the latter 
two mixtures with air and, also, of air and C02 with the results of other investigations 
a r e  given. In addition, transport properties computed from the full equations of the first 
approximation of the Chapman-Enskog rigorous kinetic theory a r e  compared to those 
computed from first and second approximations to these equations. 

INTRODUCTION 

The Martian atmosphere, as well as other planetary atmospheres, is believed to 
consist primarily of carbon dioxide, nitrogen, and argon. In order to perform meaningful 
boundary layer and wake analyses for entry spacecraft, reasonably accurate values of the 
high-temperature thermodynamic and transport properties of these atmospheres a r e  
required. Thermodynamic properties of several NASA Mars model atmospheres have 
already been calculated (refs. 1 to 4). In this report, attention is focused on the calcula­
tion of viscosity, thermal conductivity, and Prandtl number of dilute, ideal gas mixtures 
in  a state of local chemical equilibrium. The mixtures consist of a maximum of nine 
chemical species: C02, 02 ,  N2, NO, COY0, N, Cyand Ar. A specific mixture need not 
contain ad nine of these species. 

There a r e  several  approaches to the computation of transport properties of multi­
component mixtures. The first approach, such as presented by Kennard (ref. 5), makes 
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use of simple kinetic theory based on mean f ree  path concepts. The second approach 
makes use of the more precise Chapman-Enskog theory (ref. 6) which was extended to 
multicomponent mixtures by Hirschfelder, Curtiss, and Bird (ref. 7) and which was modi­
fied to account for multiple atomic interactions by Mason, Vanderslice, and Yos (ref. 8) .  
The third approach makes use of the kinetic theory of polyatomic gas mixtures developed 
by Monchick, Yun, and Mason (ref. 9). 

The first two approaches apply rigorously only to dilute, nonreactive, monatomic 
gas mixtures, and the third applies to dilute, nonreactive, polyatomic gas mixtures. 
Thus, in a s t r ic t  sense, none of these theories can be used for the mixtures under con­
sideration without modification. Of the three approaches, the third is the most applicable. 
However, utilization of this theory requires extensive knowledge of rotational and vibra­
tional relaxation t imes which, unfortunately, a r e  not currently available for all of the 
polyatomic species. In this work, a slight modification of the second monatomic gas 
theory, referred to as the rigorous kinetic theory, is used. 

The principal modification consists of the introduction of an expression (ref. 10) to 
account for the effects of internal degrees of freedom on thermal conductivity. For vis­
cosity and the translational portion of the thermal conductivity, the equations resulting 
from the first approximation (i.e., the lowest Sonine approximation leading to nonzero 
results for the transport properties) of f irst-order Chapman-Enskog perturbation theory 
(ref. 7) a r e  used directly. In other words, internal degrees of freedom and chemical 
reactions a r e  assumed to have negligible perturbing effects on these equations. The 
results of Butler and Brokaw (ref. 11) a r e  used to compute a reactive contribution to the 
thermal conductivity. It is also assumed that the collision integrals involved in  all these 
equations, referred to herein as the full kinetic-theory equations, can be evaluated from 
orientation-averaged interaction potentials. 

Although the basic equations for calculating transport properties a r e  well known 
(refs. 7 and 10 to 14), the collision integrals needed in  these equations have not yet been 
determined for all pairs  of species present in the atmospheric models. Fortunately, 
many of the interactions of importance also occur in  air, and these have received con­
siderable study (refs. 15 to 19). Herein, the tables of Yun and Mason (ref. 19), containing 
the most important air-collision integrals, a r e  used. 

The procedure followed in obtaining collision integrals for the remaining interac­
tions - namely those associated with C02,CO, C, and Ar - is a modification of the tech­
nique employed by Amdur and Mason (ref. 20). For each interaction, appropriate low-
temperature and high-temperature potentials a r e  obtained from experimental data and/or 
approximate calculations. Then, the low-temperature and high-temperature collision 
integrals determined by these potentials a r e  plotted as a function of temperature, and the 
two branches are joined by a smooth curve. Although this curve is not uniquely defined, 
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the technique should be markedly superior to using collision integrals generated from 
low-temperature potentials throughout the entire temperature range. 

Numerical results for viscosity, thermal conductivity, and Prandtl number are 
obtained for three different atmospheres: air, 100 percent C02, and a mixture (referred 
to herein as the M a r s  model atmosphere) of 43 percent C02, 25 percent N2, and 32 per­
cent Ar (by vol.). Comparisons of the latter two atmospheres with air and of the present 
air results with those of Hansen (ref. 21) and Yos (ref. 22) are shown. The C02 results 
are compared with those of Thomas (ref. 23) and Van Tassel1 (ref. 24); Transport prop­
er t ies  obtained from the full kinetic-theory equations are compared with those obtained 
from first and second approximations to these equations. 

SYMBOLS 

A parameter in  exponential repulsive potential (eq. (6)), electron volts 

A;j collision integral ratio 

a parameter in exponential repulsive potential (eq. (6)),l/angstrom 

B*. coilision integral ratio 

b impact parameter 

C1,ij 9'2 , i j  9'3 , i j  9 constant defined by equation (BlO), (Bll) ,  (B12), (B24), and (B25), 
C4,ij 'C5,ij respectively 

cP mixture specific heat at constant pressure (per mole of undissociated 
mixture) 

nondimensional mixture specific heat at constant pressure , .% 
c; R 

cP,i molar specific heat at constant pressure of species i 

c;,i nondimensional specific heat at constant pressure of species i, -CP,i
R 

Dij binary diffusion coefficient of species i and j . 

d parameter in point center of repulsive force potential (eq. (5)) 
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dO,dN distance from center of mass  of molecule to 0 or N atom 

Eik element in  reactive conductivity determinants (eqs. (B30) and (B31)) 

'rk nondimensional element in  reactive conductivity determinants (eqs. (41) 
A0and (4211, R Eik 

g initial relative speed of colliding particles 

AHi enthalpy of reaction for reaction i 

AHi 
AH: nondimensional enthalpy of reaction for  reaction i, -

RT 

Hij element in viscosity determinants (eqs. (B2) and (B3)) 


Hi*j nondimensional element in viscosity determinants (eqs. (25) and (26)), qoHij 


hi molar enthalpy of species i 

hihr nondimensional molar enthalpy of species i, -RT 

i,j,k,m,p indices 

k Boltzmann's constant 

Lij elements in translational conductivity determinants (eqs. (B17) and (B18)) 

L; nondimensional elements in  translational conductivity (eqs. (31) and (32)), 

AoLij 

Mi molecular weight of species i 

MU molecular weight of undissociated mixture 

m mass per particle, grams 

NA Avogadro's number 
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ni j  

P 

R 

r 

rm 

rLl 

T 


T* 


t 

fxli 

a! 


ai 

S j  

P 

Prandtl number 


first approximation to Prandtl number 


second approximation to Prandtl number 


parameter i n  point center of repulsive force potential (eq. (5)) 


stoichiometric coefficient of species j in reaction i 


pressure,  atmospheres 


universal gas constant, ergs  per OK-mole 


distance between colliding particles, angstroms 


value of r at potential energy minimum 


distance of closest approach of particles 


absolute temperature, OK 


nondimensional absolute temperature, -T 

d k  


number of independent reactions 

symbolic representation of chemical symbol for species i 

mole fraction of species i 

parameter controlling steepness of repulsive part  of exp-6 potential 

exp-6 parameter for binary collision of particles of species i 

exp-6 parameter for binary collisions of particles of species i and j 

temperature parameter used in finding collision integrals for exponential 
repulsive potential (eq. (22)) 
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Y* 

Aij 

A?. 
1J 


E 


Ei 

�i j  

T 

T* 

x 

nondimensional relative velocity, ( ~ y ’ ~
2kT 

g 

parameter in  reactive conductivity equations 

A0nondimensional parameter in  reactive conductivity equations, -R Ai j  

depth of potential well, electron volts 

depth of potential well for interaction of two particles of species i, 
electron volts 

depth of potential well for interaction of two particles of different species 
and j ,  electron volts 

viscosity 

nondimensional viscosity, 	-T 
TO 

first approximation to viscosity 

second approximation to viscosity 

viscosity of pure species i 

reference viscosity, 3.20295 X E,grams per centimeter-second 

total thermal conductivity 

nondimensional total thermal conductivity, 	-x 
A0 

first approximation to total thermal conductivity 

second approximation to total thermal conductivity 

frozen thermal conductivity, A t  + Aint 
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Xf ,I 

Xf ,II 

Xint 

Cnt  

XO 


P 

V 


U 

first approximation to frozen thermal conductivity 

second approximation to frozen thermal conductivity 

nondimensional frozen thermal conductivity, -Xf 

XO 


conductivity of pure species i 

internal contribution to total thermal conductivity 

Xintnondimensional internal conductivity, -
XO 

reference thermal conductivity, 4.16118 X lo3 \IT, 
oergs  per centimeter- K-second 

reactive contribution to total thermal conductivity 

nondimensional reactive conductivity, ­h r  
A 0  

first approximation to reactive conductivity 

translational contribution to total thermal conductivity 

nondimensional translational conductivity, -A t  
XO 


first approximation to translational conductivity 

second approximation to translational conductivity 

mim . 
reduced mass,  

mi + mj 

total number of species considered 

collision diameter, angstroms 
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collision diameter for binary collision of species .i 


collision diameter for binary collision of species i and j 


interaction potential, electron volts 


angle of deflection 


collision integral 


nondimensional collision integral, 
'(2,s) 

(2,s)
'rigid sphere 

modified collision integral, o~'(',~)*, angstroms2 

ANALYSIS 

Thermodynamic Properties 

The thermodynamic properties required in calculating mixture transport properties 
a r e  the mole fractions, the mixture constant-pressure specific heat, the species constant-
pressure specific heats, and the species enthalpies. For  each mixture, these properties 
were calculated by using the computer program developed by Allison (ref. 3) and Newman 
and Allison (ref. 4). Figures 1, 2, and 3 show the dependence of the mole fractions on 
temperature for pressures  of 0.001, 0.01, 0.1, 1.0, and 10 atm for air, C02, and the M a r s  
model atmosphere (43%C02, 25% N2, 32%A r  (by vol.)), respectively. Figures 4, 5, and 6 
show the variation of the nondimensional specific heat of these mixtures with temperature 
for  the same pressures.  The nondimensional species specific heats and species enthal­
pies a r e  shown in figures 7 and 8, respectively, and apply for all three mixtures. 

Inspection of figures 1to 3 reveals that electrons and ionized atoms become impor­
tant a t  the higher temperatures, especially a t  low pressure. Since ionization is not 
included in subsequent transport-property calculations, it is necessary to specify regions 
of validity for these properties. More is said about this in  the section "Results and 
Discussion. " 

Potentials 

As noted in  the Introduction, transport properties depend upon the collision integrals 
for each pair of chemical species in  the mixture. These collision integrals, in  turn, 
depend upon the interaction potentials for the possible binary encounters. It is therefore 
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appropriate at this point to enumerate all possible binary interactions for a mixture of 
C02, 02, N2, NO, CO, 0, N, C, and Ar. These interactions a r e  given in  table 1. 

With reference to table 1, parentheses around a pair designate that its interaction 
potential has been considered previously and that the corresponding collision integrals 
can be obtained from the tabular values of Yun and Mason (ref. 19). Brackets around a 
pair mean that an accurate interaction potential for the pair is not critical because one or 
both of the mole fractions associated with the pair a r e  always small. Table 2 summa­
rizes the potentials used in  the computations. The atom-atom potentials listed in this 
table apply to the interaction of atoms in  their ground electronic states. For the limited 
temperature range considered herein, such potentials are adequate. 

In the following paragraphs, some general comments are made about the interaction 
potentials. Then attention is focused on specific cases  with special emphasis placed on 
pointing out the difficulties encountered and the assumptions invoked. 

The potentials used at low temperature are the Lennard-Jones 6-12 potential, 

and the modified Buckingham exp-6 potential 

Potential parameters (i.e., E, 0, a,and rm) for many of the like-like interactions 
were  obtained from references 7 and 25 for the 6-12 and exp-6 potentials, respectively. 
In the absence of experimental data, potential parameters for interactions of unlike mol­
ecules were generated from those for like molecules by using empirical combining rules. 
For the 6-12 potential, 

�i j  = \"3 
and for  the exp-6 potential, 

- 'm,i + rm,j 
'm,ij - 2 



I 

E i j  = llElEJ 

These rules hold well for the interaction of molecules i and j provided these mole­
cules have essentially spherically symmetric force fields. The sources from which 
potential parameters were obtained are given in table 2. 

At high temperatures the repulsive portion of the potential primarily determines 
the collision integrals (ref. 7). Under these conditions, two potential forms were used: 
the point center of repulsive force potential 

(p =-d 
(5)

rn 

and the exponential repulsive potential 

where d, n, A, and a a r e  constants for a given interaction. Potentials derived from 
molecular beam scattering experiments a r e  normally cast  in the first form, although the 
second can be used. Results of semiempirical quantum mechanical calculations a r e  
usually presented in  the second form which has some theoretical basis. According to 
Amdur and Mason (ref. 20), equation (6) usually remains valid over a wider range of r 
than equation (5). For both potentials, experiment seems to confirm a geometric mean 
rule for finding potentials for unlike atoms from those for like atoms (ref. 20). That is, 
if @(D-D) denotes the interaction potential for two D atoms and i f  +(E-E) denotes the 
interaction potential for two E atoms, then the interaction potential for atoms D and E is 
given by (refs. 20, 26, 27, and 28) 

It should be emphasized that this rule does not apply to atom-molecule o r  molecule-. 
molecule interactions. 

Many of the high-temperature atom-molecule and molecule-molecule interaction 
potentials listed in  table 2 were obtained by averaging appropriate atom-atom potentials 
over all orientations as was done in references 19 and 28 for binary interactions of atoms 
with diatomic molecules and diatomic molecules with diatomic molecules. Appendix A 
extends this technique to include interactions with the triatomic C02 molecule. Specific 
cases are treated in the following sections. 
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Carbon monoxide interactions.- Figures 2 and 3 show that 60 is a major constitu­
ent in  the C m  and COZ-NZ-A~mixtures throughout most of the temperature range con­
sidered. Consequently, reliable transport property computations hinge strongly on knowl­
edge of potentials for the various CO-molecule and CO-atom interactions. Yet there 
exists only a meager amount of information on these potentials, especially at high tem­
perature. Specifically, molecular beam scattering experiments on the Ar-CO system 
yield (ref. 29) 

+(Ar-CO) = ­551 eV (2.09 A 5 r 5 2.68 A) (8)
r6.99 

To the authors' knowledge, no high-temperature potentials are presently available for the 
remaining CO interactions. 

Because of this lack of data, it was necessary to resor t  to reasonable approxima­
tions. The logic used proceeds as follows. Since CO and N2 have very similar nuclear 
and electronic structures and since these factors play a dominant role in determining 
intermolecular potentials, it appears plausible to assume that CO and N2 behave similarly 
during molecular encounters. An indication of the validity of this assumption is provided 
in figure 9 where the high-temperature scattering potential for Ar-Nzl (ref. 29), 

@(Ar-N2)=- 567 eV (2.04 A 5 r 5 2.53 A) (9) 
r 7.06 

is compared to the Ar-CO potential given by equation (8). The percent difference in 
energy varies from about 3 percent at the smallest common value of r to about 4 per­
cent at the highest common value of r. From the standpoint of transport-property com­
putations, the comparison is extremely favorable because the potentials enter these com­
putations solely through collision integrals, and these quantities a r e  relatively insensitive 
to the magnitude of the potentials. Figures 10 and 11, which compare the two most 
important collision integrals for the potentials of equations (8) and (9), clearly demon­
strate this point. The percent difference in  corresponding collision integrals never 
exceeds 3.1 percent. Figures 12 and 13 compare low-temperature collision integrals for 
CO-CO and N2-N2 interactions. The Lennard-Jones 6- 12 potential with parameters 
derived from viscosity measurements (ref. 7) was used for each interaction. Again the 
agreement .is remarkable. 

'The high-temperature potential listed in  table 2 for Ar-Nz differs from equation (9). 
Equation (9) is valid for a higher temperature range than considered in  the transport-
property computations. It is used here simply because its range of validity is very
nearly the same as that of equation (8). Were this not true, the comparisons would 
be meaningless. 
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Based on these comparisons, it was assumed that the potential for each CO inter­
action could be replaced by the potential for the analogous N2 interaction; for  example, 
CO-02 was treated as N2-02. This assumption is incorporated in table 2. 

Argon interactions.- With the exception of the Ar-CO2, Ar-C, Ar-0,  and Ar-NO 
interactions, table 2 provides adequate explanation of the methods employed to formulate 
interaction potentials for the various argon interactions. Potentials for A r - C Q  and 
Ar-C interactions are considered in  later sections dealing with carbon dioxide and carbon 
interactions, respectively. This section deals with high-temperature potentials for  the 
Ar -0  and Ar-NO interactions. 

The high-temperature Ar -0  potential was calculated from the geometric mean rule 
(eq. (7))with 

and 

Cp(0-0)= 32.56 e- 2.1971- eV 

where Cp(Ar-Ar) was taken directly from reference 20 and Cp(0-0) was obtained from 
a least-squares curve f i t  of Meador's results (ref. 18). 

It should be noted that Vanderslice, Mason, and Maisch (ref. 17) also present a 
potential for the 0-0 interaction. When their result is used, Cp(Ar-0) differs apprecia­
bly from that given in table 2. However, the collision integrals corresponding to the two 
potentials differ very little. Meador's result for Cp(0-0) was chosen primarily because 
it leads to greater consistency with known low-temperature potentials when it is used in 
the construction of high-temperature potentials for more complex interactions, such as 
CO2-02, by the orientation-averaging technique. The same situation exists for the N-N 
interaction, which arises in the computation of the Ar-N interaction. 

To calculate the high-temperature Ar-NO potential, the technique of averaging indi­
vidual atom-atom interaction potentials over all molecular orientations was employed 
(ref. 19). This procedure yields 

'aArOr
Cp(Ar-NO) = AArOe 

+ 1> sinh (aArOdO) - aArOdO cash 
d ra A r 0  0 

-aArNr+ AArNe 
PArN'  + ') sinh"ArNdN - "ArNdN 'Osh ( aArNd4  (12) 

a i rNdNr  
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where AA~o,  aAro, A A ~ N ,and aArN are exponential repulsive potential param­
eters for the A r - 0  and Ar-N potentials (eq. (6)); r is the distance from the center of 
mass  of the nitric oxide molecule to the argon atom; and d o  and dN are the distances 
from the center of mass  of the nitric oxide molecule to its oxygen and nitrogen atoms, 
respectively. The Ar -0  parameters can be obtained by inspection of @(Ar-0) in 
table 2. The Ar-N parameters come from 

c)(Ar-N) = eV (13) 

Equation (13) was obtained from the geometric mean rule using the Ar-Ar potential pre­
sented in  equation (10) and Meador's result  for the N-N potential (ref. 18), 

$(N-N) = 12?e-2.716r eV 

According to Herzberg (ref. 30), 

d o  = 0.53667 A 

dN = 0.61333 A 

In order to make use of available tables of collision integrals, a least-squares curve f i t  
of equation (12) was performed to obtain the exponential repulsive potential presented in 
table 2. 

Carbon dioxide interactions.- All low-temperature potentials in table 2 for C02 
interactions except those for CO2-CO2, C02-NO, and C02-Ar a r e  based on experimental 
diffusion coefficient determinations (ref. 31). Lack of such data for C02-NO and CO2-Ar 
interactions necessitated use of viscosity data and the combining rules given in equa­
tions (3). 

The validity of using the low-temperature CO2-CO2 potential in table 2 in the calcu­
lation of multicomponent mixture transport properties is open to question. Recent self-
diffusion coefficient measurements for (2% between 1103O K and 1944' K indicate that 
different sets of 6- 12 parameters are required to correlate viscosity and self-diffusion 
data (refs. 32 and 33). Use  of the potential from viscosity measurements in the prediction 
of self-diffusion coefficients, and vice versa,  can produce e r r o r s  as high as 30 percent o r  
40 percentsat temperatures around 2000° K. Quite likely the need for two distinct poten­
tials to correlate experimental results arises from the fact that C02 is a long linear mol­
ecule with a nonspherical force field. Based on this evidence, ooe must conclude that the 
theory does not yield uniformly good results for  C-. 
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In an effort to decide whether the viscosity o r  self-diffusion potential was more 
appropriate for present purposes, the low-temperature viscosity and thermal conductivity 
of pure C02 were calculated by using both potentials. The viscosity potential led to good 
agreement with experimental viscosity and conductivity correlations (ref. 34) for C02, 
and the diffusion potential led to poor agreement. Therefore, it was assumed that the 
viscosity potential should also be more appropriate for mixture computations. It should 
be noted, however, that the situation might be reversed in the computation of multicom­
ponent diffusion-coefficient properties which are not considered herein. 

With the exception of the CO2-N and CO2-C interactions, the high-temperature 
CO2-molecule and C02-atom potentials in  table 2 were derived by averaging atomic 
interactions over all orientations. Appendix A contains all pertinent equations used in 
this procedure. Since these equations contain the C-0, C-C, C-N, and C-Ar interaction 
potentials and since these potentials a r e  not currently available, it was necessary to 
introduce further approximations. The C-0  potential was approximated with the N-N 
potential; and in the last three interactions, the carbon atom was treated as a nitrogen 
atom. These approximations a r e  not as critical as it might appear because the averaging 
process automatically emphasizes the interactions of the peripheral atoms. Finally, 
establishment of c 0 2 - N ~and C02-NO potentials requires knowledge of @(N-0). For 
both potentials, 

@(N-0) = 69.17e'2-556r eV 

was used. This potential was found by curve-fitting Meador's results (ref. 18). After the 
introduction of these approximate potentials into the equations of appendix A, each 
orientation-averaged potential was replaced by a least-squares curve f i t  to obtain the 
results presented in table 2. 

Carbon interactions.- The assumption that carbon atoms can be replaced by nitrogen 
atoms was also utilized in  obtaining potentials for the interaction of carbon atoms with the 
various atoms and molecules. This assumption is much more critical because carbon­
other-atom potentials occur in  every term of the orientation-averaged potentials. 

Collision Integrals 

As noted previously, interaction potentials enter transport-property computations 
through a set of collision integrals. For the interaction of particles i and j along a 
single potential @, the integrals a r e  defined by the following formulas (ref. 7): 

~ 
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In general, two ground state atoms can interact along any one of several  potential 
energy curves. For  this situation, equations (16) and (17) must be evaluated for each 
curve, and then all of the resulting collision integrals with the same superscripts are 
averaged with a priori  assigned weighting factors to yield an effective set of collision 
integrals for the interaction (ref. 8); These computations have been performed for the 
atom-atom interactions of importance in  dissociating air (ref. 19), and fortunately, many 
of the same results also apply for the mixtures under consideration. 

The basic-mixture transport-property equations are usually expressed in  te rms  of 
reduced collision integrals. In reference 7,which is probably the most widely used ref­
erence for gaseous transport theory, the transport properties are formulated ih te rms  of* 
a set of quantities dZ,'),defined as the ratio of equation (17) to the corresponding 
expression for the rigid sphere model; that is, 

In the tabulations of the collision integrals of air, Yun and Mason (ref. 19) employed the 
slightly modified form, 

where cr denotes the collision diameter. Since these tabulations were used in  the pres­
ent work, this notation was adopted for all interactions. 

The following collision integrals and collision integral ratios are required to com­
pute mixture viscosity and thermal conductivity: 

-(1,1)aij 

'i j 

I .  

-', : 
, . . _  
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In these equations, subscripts i and j designate quantities associated with the inter­
action of species i and j. 

For a given pair of species, that is for fixed i and j ,  aiJ and qJ vary 
considerably with temperature. In addition, at a fixed temperature, both quantities differ 
significantly for different pairs of species. On the other hand, A*. and B:j vary little 

1J 
regardless of the temperature or of the pair of species considered. This fact is illus­
trated in  figures 14 and 15 where these quantities are plotted for the Lennard-Jones 6-12 
and modified Buckingham exp-6 potentials. Figure 16 shows the quantities for the expo­
nential repulsive potential. The abscissa in  figures 14 and 15 is defined as 

and that in  figure 16 as 

B = ink) 
Generally, for the low-temperature potentials in  table 2, the extreme right-hand portions 
of figures 14 and 15 apply. Furthermore, 0 normally ranges between 7 and 10. As can* be seen from the graphs, little e r ro r  should incur if AT and Bij a r e  arbitrarilyj
assigned the constant values 

B*­13 = 1.15 (23b) 

These values give slight emphasis to the exponential repulsive potential (fig. 16) because 
of its appropriateness at the higher temperatures of interest. At any rate, actual values 
should deviate from the assigned ones by less than 5 percent. These results were used 
in  all transport-property calculations. 

no simple approximations hold because of the significantFor 0.. and d2y2)
1.l 13 

variations mentioned; consequently, it was necessary to consider each individual inter­
action. Collision integrals for interactions that occur in air were taken directly from 
reference 19. Collision integrals for the remaining interactions, given in  table 3, were 
obtained by essentially the same method employed in  references 19 and 20. The principal 
steps followed in this procedure were as follows. For  each interaction, #A was 

computed for both the low- and high-temperature potentials and plotted as a function of 
temperature. This produced a curve consisting of two branches whose ranges of validity 
were estimated by using the technique of Hirschfelder and Eliason (ref. 35). The 

16 



-0,l) werebranches were  then joined by a single smooth curve from which values of Si? 

read. This procedure was also used for d2y2).Collision integrals for the Lennard-
Jones 6-12 potential were obtained from reference 7; those for  the modified Buckingham 
exp-6 potential from references 7 and 25; those for  the point center of repulsive force 
potential from reference 36; and those for the exponential repulsive potential from 
reference 37. 

Although there is no way of checking the absolute accuracy of the results presented 
in table 3, it should be pointed out that the calculation procedure outlined is intrinsically 
more accurate for some interactions than others because of variation in the lengths of the 
"faired-in" curves. To illustrate this point, curves used for  the Ar-02 and CO2-02 
interactions are shown in figures 17 to 19. Figure 20 gives d 2 y 2 )  for  the ~ 0 2 - 0 2  
interaction computed from both the high- and low-temperature potentials. No faired 
curve is given, however, since the upper curve does not become valid until the tempera­
ture exceeds the range considered. Clearly, the Ar-02 results should be more accurate 
than the CO2-02 results. Actually, the CO2-02 curves are typical of all curves encoun­
tered for C02 interactions. This further bears  out the point made earlier concerning the 
uncertainty associated with (2% interactions. 

Transport Properties 

In the preceding sections all requisite data for  computing viscosity, thermal con­
ductivity,and Prandtl number have been presented. This section summarizes convenient 
forms of the equations for these properties. In addition, possible causes of numerical 
inaccuracy a r e  pointed out, and techniques for alleviating inaccuracy a r e  given. 

Because of the complexity of the kinetic-theory equations for viscosity and thermal 
conductivity of multicomponent mixtures, investigators (refs. 38 and 39, for example) 
have developed a number of relatively simple approximations, which "normally" yield 
values within a few percent of those attained from the full equations. In this note, the full 
equations were  employed for the following reasons: 

1. As pointed out by Brokaw (ref. 14), inherent deviations in individual properties 
introduced by the use of approximate formulas may be such that e r r o r s  a r e  magnified in  
forming such ratios as the Prandtl number. 

2. The systems under consideration are simple enough that the full equations can be 
solved very rapidly with the aid of a high-speed computer. 

For purposes of assessing the validity of using approximate equations and also of 
comparing the final results with those of other authors, first and second approximations 
to the viscosity, translational thermal conductivity, and a first approximation to reactive 
conductivity are included in  the following subsections. These equations as well  as the 
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special forms of the full equations are derived from more familiar equations in  
appendix B. 

Viscosity.- It is shown in appendix B that the full kinetic-theory expression for the 
viscosity of a v-component, monatomic gas mixture can be expressed in  dimensionless 
forms as 

Hz2 . . . 
H12 . . . 

Hfv . . . 
x2 . . .  

where 

. 

and C1 and C2 are defined by equations (B10) and (B11). 

Also shown in appendix B are the first and second approximations to equation (24), 

and 
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Although equation (24) applies rigorously only to dilute monatomic gas mixtures, it 
is well known that the presence of internal degrees of freedom has very little influence 
on viscosity (ref. 7). Hence, this result was  applied without modification to the mixtures 
of monatomic, diatomic, and triatomic species under consideration. 

In using equation (24), care  must be exercised to obtain meaningful results. 
Inspections of equations (25) and (26) reveals that both Hri and HTj approach 0 as xi 
approaches 0.. Under these conditions, both the numerator and denominator in equa­
tion (24) become small  and the ratio approaches the indeterminant form O/O. To apply 
the equation correctly, only those rows and columns associated with chemical species 
actually present in the mixture should be included. This means that the orders  of the 
determinants may change with changes in  temperature and pressure. In other words, 
when a given species disappears because of dissociation, its row and column must be 
omitted, and the remaining rows and columns must be shifted to f i l l  the void. Likewise, 
when a new species appears, a new row and column must be included. However, the 
inclusion of new rows and columns can be avoided by initially formulating equation (24) 
so  as to account for all possible species. Then one is concerned only with omitting 
appropriate rows and columns. This process can be actuated either by inspecting the 
magnitude of xi o r  Hri and was employed herein. 

In addition to providing a means of avoiding numerical difficulty, the deletion pro­
ces s  inherently results i n  greater flexibility. Thus, a single general formulation 
including many species can easily be specialized to simpler mixtures with fewer species. 

Thermal conductivity. - As noted in  the Introduction, the rigorous kinetic theory 
applies strictly to monatomic gases; thus, it does not account for the presence of internal 
degrees of freedom. Although these degrees of freedom do not significantly affect vis- . 
cosity and diffusion, energy transition among the several  degrees of freedom does mark­
edly influence thermal conductivity. At present, however, available polyatomic mixture 
theories remain intractable so far as practical computations a r e  concerned; therefore 
approximations must be invoked. Energy transport due to the combined effects of diffu­
sion and chemical reactions can become extremely large under certain conditions; hence, 
it must be taken into account. 

All these effects can be included in  approximate fashion by expressing the total con­
ductivity as (ref. 10) 

where ht designates the translational contribution; hint, the internal contribution; and 
hr, the reactive contribution. A frozen conductivity is also used in the calculations and is 
defined as 
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First and second approximations Xf,I  and Xf,n are determined by replacing X t  in  the 
equation for Xf with Xt , I  and 'Xt,H, respectively. The following paragraphs set  forth 
the equations used to compute each contribution. 

According to appendix B, the results of Muckenfuss and Curtiss (ref. 13) for  the 
translational conductivity2 can be expressed in  nondimensional form as 

1 %  L*12 . . . L*lV 

* 
L;V L f v  . . . Lvv 

where 

The constants C2, C4, and C5 are defined by equations (Bl l ) ,  (B24), and (B25). 

The first- and second-order approximations to equation (30) a r e  

.. 

2Two definitions a r e  commonly used for translational conductivity. The present 
form applies when the energy f lux is expressed in  t e rms  of the temperature gradient and 
the diffusion velocities. 
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and 


The discussion, given previously in  connection with viscosity, concerning the 
appearance and disappearance of chemical species as temperature and/or pressure 
change also applies to the evaluation of equation (30). Equation (30) was initially formu­
lated to include all nine species. For a mixture containing less than nine species, the 
correct form was obtained by first deleting appropriate rows and columns in  the numer­
ator and denominator determinants and then shifting the remaining rows and columns to 
fill the gaps. 

The internal contribution to the conductivity was computed from Hirschfelder's 
approximation (ref. 12) 

Xint = c 
i=l 1xj -

(35) 
Dii 

j = l  Dij 

together with his generalized Eucken expression (ref. lo), 

For computational convenience, these equations were combined and the resulting expres­
sion was written in nondimensional form as 

j = l  

The 'reactive contribution to the conductivity arises from the energy transport due 
to the combined effects of diffusion and chemical reactions. In regions of high tempera­
ture, dissociation occurs and then the species diffuse down the resulting concentration 
gradient to cooler regions where recombination occurs. Simultaneously, there is a f lux 
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of recombined species from lower to higher temperature. The net effect is a transport 
of chemical enthalpy from regions of high temperature to regions of lower temperature. 

.The reactive contribution was computed from the original resul ts  of Butler and 
Brokaw (ref. ll).3 Their formulation requires that the chemical reactions needed to 
account for  the species present in  the mixture be expressed in a special way. From the 
total of v species present, t is chosen as independent. Then a system of t reac­
tions is constructed such that each independent species occurs on the left-hand side of 
one, and only one, reaction and has -1 as its stoichiometric coefficient. Furthermore, 
the right-hand sides of the reactions contain dependent species only; that is, if  nij
denotes the stoichiometric coefficient of species j in the ith reaction and if  b]j 
denotes the chemical symbol of species j ,  the system of reactions takes the form 

(i = 1,2,...,t) (38) 
j= t+l  

Provided the reactions are expressed in this fashion, the nondimensional form of 
the reactive conductivity becomes (appendix B) 

* A, = - (39) 

where 

~ - _  ~ ~- - . . ­

31n reference 40, Brokaw gives a simpler formulation of this problem. However, 
the original formulation proved more convenient for present purposes. 
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(k = 1?2?...,t) 

* xPE& = y1 f A&j ("ijxm - nimx$ ("kjxm - "kmXj) + f f nijnkj Apj ­
j=t+l m=j+l Xjxm j=t+l p=l xj 

V
+ 1 (.kj hij* + nij A:.$ - A:k (i$ = 1,2,...?t) 
j= t+l  

(42) 

The first approximation to A: is given by 

(44) 
i=1 Eii 

This approximation corresponds to setting E$(i # k) equal to 0 in equation (39). Thus, 
the approximation neglects coupling among the reactions in the sense that E:k truly 
vanishes only when reactions i and k share no common dependent species. One could 
easily derive a second approximation to include coupling effects; however, since the 
approximations a r e  used herein to aid in explaining deviations of present results from 
those of other investigators and since these investigators use equation (44), a second 
approximation to A: was not considered. 

For the mixtures considered, accuracy problems were occasionally encountered in  
the evaluation of equation (39) when a single se t  of chemical reactions was  used to 
describe the compositional changes throughout the entire ranges of temperature and pres­
sure. This difficulty a r i s e s  because some of the elements in  both the numerator and 
denominator determinants become extremely large whenever one or more of the mole 
fractions approach 0. Under these circumstances? the compositional changes should be 
described by a different system of reactions. Thus, several  different se t s  of reactions 
a r e  needed to evaluate A; over the entire ranges of temperature and pressure. The 
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technique used to automatically select appropriate reactions is discussed in the following 
paragraphs. 

When all nine species were present in  significant quantity, the following set of 
reactions was used: 

(1) c 0 2  Z C O + O  

(2) 0 2  z 2 0  

(3) N2 Z 2N 

(4) N O z N + O  

(5) c zco - 0 I (45) 

The number to the left of a reaction serves  to identify the reaction and the independent 
component involved in the reaction; that is, C02,  0 2 ,  N2, NO, and C are designated as 
components 1, 2, 3, 4, and 5, respectively. The dependent components, COY0, N, and Ar 
are labeled as 6, 7, 8, and 9, respectively. 

When one of the independent components vanishes while all the dependent compo­
nents a r e  present in significant amounts, it is obvious from equation (41) that the diagonal 
element corresponding to the reaction involving this component becomes unbounded. (For 
example, E11 - 03 as x i  - O$ Inspection of equations (41) and (42)reveals that all 
other elements assume correct values. Accordingly, the form of equation (39) appropri­
ate  to reactions (45),can be modified to give the correct form for this situation simply by 
deleting the row and column containing the unbounded element in each determinant and by 
shifting the remaining rows and columns. The process works just as well when several  
independent species vanish simultaneously. In this work, the deletion and shifting pro­
cess was actuated by inspecting the magnitude of E a .  

When one o r  more of the species chosen as dependent vanish, the situation cannot be 
handled as easily. It is not sufficient to omit reactions in equations (45);rather,  com­
pletely new se ts  of reactions must be formulated. This is true because some species 
chosen as independent in  equations (45)become dependent under these circumstances. 

The following cases  proved sufficient for the three mixtures considered: 

Case I Equations (45) 

Case 11 C02 f CO + 0 

0 2  2 0  

NO Z L  N2 + 02 
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Case 111 C02 Z CO +-1 0 2  a 
NO Z 1 N2 + 1 0 2  

Case IV No reaction 

For each case, vanishing of an independent species was handled by the technique 
previously explained for case I. Selection of the appropriate case was  based on inspec­
tion of the mole fractions. 

Prandtl number.- The Prandtl number is defined by 

In terms of the variables used herein, this equation becomes 

N p r  =--	16 V*': (47)
25 MuX* 

where Mu denotes the molar mass  of the undissociated mixture in g/mole. The Prandtl 
number defined by equation (47) is frequently termed the "effective Prandtl number" to 
connote that both c: and h* include reactive contributions. Two approximations to 
the Prandtl number N p r , I  and NPr,* were computed for air and C02. These approx­
imations are given by 

where 

A& = At*,* + + A;,J 
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RESULTS AND DISCUSSION 

In this section numerical results are given, in turn, for air, carbon dioxide, and the 
M a r s  model atmosphere (43% C02,25% N2, and 32% Ar (by vol.)). For each mixture, 
calculations based on the full equations are presented first. Then, for air and carbon 
dioxide, calculations based on the full equations are compared both with those based on 
approximate equations and with those of other investigators. Finally, the viscosity, total 
conductivity, and Prandtl number of air are compared to the respective properties of 
carbon dioxide and the Mars model atmosphere. 

Since ionization was not taken into account in the computations, the results at a 
given pressure a r e  terminated at a cut-off temperature which was estimated by com­
paring thermodynamic properties, c$ in  particular ,computed with and without ioniza­
tion taken into account. Normally, the temperature cut-off 'determined in  this manner 
corresponds to an electronic mole fraction between 5 X IOm4 and lom3. 

Transport Properties of Air 

The full-equation computations for viscosity, frozen conductivity, reactive conduc­
tivity, total conductivity, and Prandtl number a r e  shown in figures 21, 22, 23, 24, and 25, 
respectively. For  a given pressure,  the temperature dependence of each property can be 
divided roughly into three portions, corresponding to the reactions taking place. From 
10000 K to the region at which the curves start to diverge, the mixture remains essen­
tially chemically inert. Divergence can be attributed largely to the dissociation of oxy­
gen and to the formation and subsequent dissociation of nitric oxide. The large change in 
properties at still higher temperature a r i s e s  primarily because of nitrogen dissociation. 

Figure 26 compares the viscosity from full-equation calculations at p = 1.0 atm 
with the first and second approximations and also with the calculations of Hansen (ref. 21) 
and Yos (ref. 22). The curve for the first approximation falls consistently below that 
for the full-equation calculation, reaching a maximum deviation of approximately 
11.5 percent at 6500° K. The second-approximation curve l ies below but much closer to 
the full-equation curve; in  fact, the deviations never exceed 1.5 percent. YOS'results lie 
slightly above the full-equation values at low temperatures and slightly below at high 
temperatures. Throughout most of the temperature range, Yos' values agree well with 
the second-approximation values. This agreement was expected because he used the 
same collision integrals for the major interactions and Brokaw's approximate equation 
(ref. 38) derived from a third-order approximation to the full viscosity equation. In con­
trast, the agreement with Hansen's calculations is much worse, especially above 1500° K. 
At the higher temperatures, his results consistently deviate from the full-equation values 
by about 23 percent to 24 percent. The reason for this marked difference can be 
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attributed to the fact that he uses simple kinetic theory and rough approximations for 
collision cross  sections. 

As shown in figure 27, the same type situation exists for the frozen conductivity at 
p = 1.0 atm as for viscosity. The curve for the first approximation always lies below 
that for the full-equation calculation and has a maximum deviation of about 19 percent 
between 6000O K and 70000 K. The aecond-approximation curve is also low, but deviates 
by less  than 6 percent. Yos' results,  which were calculated from Brokaw's formula 
derived from a third-order approximation, are in  excellent agreement with the full-
equation values. On the other hand, Hansen's results are again low with maximum devia­
tion of about 29 percent at 6500° K. 

Figure 28 illustrates the danger inherent in neglecting coupling among the reac­
tions, or equivalently, in  using the first approximation, in.the computation of the reactive 
contribution to the conductivity. Although the figure does not show it clearly, there is 
substantial disagreement in  the full-equation and approximate values near 2000° K. This 
disagreement is relatively unimportant, however, because the reactive conductivity is a 
small  portion of the total conductivity in  this temperature range. On the other hand, th'e 
differences which a r i s e  from neglecting coupling due to NO dissociation between 4000° K 
and 60000 K a r e  extremely significant because 1; is the principal part of the total con­
ductivity in  this temperature range. The differences a r e  even larger than they appear at 
f i rs t  glance. For instance, the percentage deviation of the first-approximation curve 
reaches a maximum of 61.6 percent at 4700° K. 

Also shown in the same figure are the calculations of Yos (ref. 22) and Hansen 
(ref. 21). Since Yos used the first approximation to the reactive conductivity and Yun and 
Mason's collision integrals, his result should, in principle, lie precisely on the dashed 
curve. To discern why the point at 50000 K does not coincide with the dashed curve, Yos' 
sources of thermodynamic information were investigated, Yos used mole fractions from 
his reference 43 for the temperature range from 1000° K to 5000' K and mole fractions 
from his reference 44 for temperatures above 5000° K. He also employed unpublished 
calculations made at AVCO Corporation for his cp,i/R and hi/RT. It was foupd that 
his reference 43 values of the mole fraction for NO differed greatly from the values used 
herein, the largest deviation being 80 percent. As a check, the first approximation was 
recalculated using Yos' sources of mole fractions and the present cp,i/R and hi/RT. 
Excellent agreement with YOS' values of A: were then obtained throughout the entire 
temperature range. Hansen's results agree well with the first-approximation values up 
to about 30000 K. His exceptionally low values between the two peaks a r e  due prima.rily 
to his complete neglect of the reaction NO Z N + 0. The lowness of Hansen's values in  
the vicinity of the second peak is thought to be a direct consequence of his method for 
obtaining collision cross sections because it has been shown that uncertainties associated 
with this method increase rapidly at high temperature (ref. 23). 
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The same general comments apply equally well to the total conductivity shown in 
figure 29. Yos' results should agree closely, but not exactly, with the second-
approximation results, whereas Hansen's results should be in  better agreement with the 
first-approximation results. It is especially noteworthy that the second-approximation 
value deviates f rom the full-equation value by 29.5 percent at 4700° K. Thus, the pre­
viously noted substantial divergence of the approximate reactive conductivity perpetrates 
into the approximate total conductivity in  a somewhat weakened but still significant 
manner. 

Since viscosity and conductivity enter directly into the Prandtl number, it is obvious 
that the Prandtl number can be extremely sensitive to approximate calculations. This is 
borne out in figure 30, which shows the full-equation Prandtl number, the first- and 
second-approximation Prandtl numbers, and the results of Yos (ref. 22) and Hansen 
(ref. 21). The striking differences in the approximate and.ful1-equation calculations are 
due primarily to the reactive-conductivity approximation, The largest  deviations, occur­
ring at 47000 K, a r e  25.4 percent and 23 percent for the first- and second-approximation 
values, respectively. Comparisons with the results of Yos and Hansen are complicated 
by the fact that their values reflect differences in  thermodynamic data. Hansen's values 
of c: do not differ markedly from those used herein, and accordingly, most of the dif­
ference shown in the figure can be attributed to the use of different theories and to his 
neglect of the NO reaction. In view of the rather large disagreement noted previously 
for  q* and A*, it is indeed surprising that Hansen's Prandtl numbers agree with the 
full-equation values as well as they do. As noted previously, Yos employed two different 
sources for mixture composition and one of these sources gives NO mole fractions which 
differ markedly from the present ones. His calculation of the Prandtl number is incon­
sistent with these sources in  the following sense. Yos used the composition from his 
reference 43 for temperatures between 1000° K and 5000° K.and that from his refer­
ence 44 at higher temperatures, but he employed the cP IR values from his reference 43 
throughout the whole temperature range. In order  to obtain a useful comparison with his 
results, the second approximation to the Prandtl number was recomputed using YOS' . 
sources of mole fractions and cPIR and the present Cp,i/R and hi/RT. Figure 31 
shows that these new values are in  good agreement with YOS'calculations. It is evident 
that the differences between Yos' Prandtl number and the second-approximation values 
a r e  primarily due to the differences in the thermodynamic data. 

Transport Properties of Carbon Dioxide 

The results of the full-equation calculations of viscosity, frozen conductivity, reac­
tive conductivity, total conductivity, and Prandtl number of carbon dioxide a r e  presented 
in  figures 32, 33, 34, 35, and 36, respectively. Just  as with air, for a fixed pressure, the 
temperature variation of each of these properties can be split roughly into three regions 



depending upon the reactions taking place. Up to the point at which the curves initially 
diverge, the gas consists of practically pure C02. As the temperature increases beyond 
this point, C02 starts to dissociate into C O  and 02, and with a small  additional increase 
in  temperature, 0 2  also starts to dissociate. Thus, the initial divergence, and for some 
curves, the first peak, arises from the almost simultaneous dissociation of C02 and 02. 
After these reactions essentially go to.completion, CO dissociation begins. This reaction 
is responsible for the rapid rise in  viscosity and frozen conductivity and for the second 
peaks in  reactive conductivity, total conductivity, and Prandtl number. 

For each of these properties , results of the full-equation calculations a r e  compared 
with approximate computations and with the results of Thomas (ref. 23) and Van Tassell 
(ref. 24) in  figures 37 to 41 for a pressure of 0.1 atm. Both Thomas and Van Tassell 
attained widely varying Prandtl numbers at this particular pressure;  therefore, this pres­
sure  was chosen to ascertain why this variation was true. (Thomas also attained wide 
variation at lower pressures  but Van Tassell did not present data for p < 0.1 atm.) 

In figures 37 and 38, the approximations for viscosity and frozen conductivity com­
pare with the full-equation calculations in  much the same fashion as was found in the 
comparison for air. Van Tassell's viscosity calculations were expected to be in good 
agreement with either the exact values or the second approximation because he utilized 
Yos' method (ref. 22) which was previously found to be quite good for air. No data from 
Van Tassell is included in  figure 38 because he does not present results for frozen con­
ductivity. For both viscosity and frozen conductivity, Thomas' results lie considerably 
below even the first approximation; this too was expected since he utilized Hansen's 
approach (ref. 21). 

Figure 39, showing the reactive-conductivity comparisons, is particularly illumi­
nating. In the region between 1500° K and 2700O K, the approximation values a r e  much 
too low; in  fact, the deviation from the solid curve approaches 100 percent near 1500° K. 
Between 2700' K and 3500° K,the approximation yields exceptionally high predictions, 
with a maximum deviation of 43 percent near 3000° K. No data a r e  shown from Van 
Tassell  because he does not provide sufficient data to allow determination of this con­
tribution. With the exception of the point at 3000° K, Thomas' results agree well with 
the exact calculation up to 5000' K. The lowness of his values in  the vicinity of the 
peaks is thought to be due to two possible causes: 

(1) As noted earlier,  uncertainties involved in  his method of finding collision cross  
sections become larger with increasing temperature. 

(2)Although he used the full equation for Xr, his equation for Eik does not agree 
with the original source (ref. 11). It is not clear whether this inaccurate equation was 
actually used in  his computations. 
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Figure 40 shows clearly that the behavior of the reactive conductivity car r ies  over 
directly to the total conductivity. Only the first-approximation curve is shown because 
the first- and second-approximation curves are practically indistinguishable. The data 
point of Thomas at 4000° K seems to be in  e r r o r  because his tables for A, Af, and A, 
are inconsistent at this temperature. 

Figure 41 clearly shows that Van Tassell's high values for Prandtl number around 
20000 K are directly attributable to the use of approximate equations. In particular, the 
exhibited behavior is directly traceable to the reactive-conductivity approximation. The 
large disagreement of Thomas' values at 4000O K and 5000° K with the exact values is 
attributable, respectively, to a tabular inconsistency and to an extremely low specific 
heat. 

Transport Properties of the Mars Model Atmosphere 

The viscosity, frozen conductivity, reactive conduc'tivity, total conductivity, and 
Prandtl number, as computed with the full equations, are presented in figures 42,43,44, 
45, and 46, respectively. Qualitatively, these properties exhibit the same type tempera­
ture variation as previously observed for air and carbon dioxide. There are, of course, 
distinct quantitative differences and these a r e  treated in  detail in  the next section. 

The initial divergence of the constant pressure curves given for these properties 
s tems from the dissociation of C02. With a slight increase in  temperature, 02 dissocia­
tion also enters the picture. Thus, the lower temperature portions of the curves are 
influenced by the coupled dissociation of C02 and @. As these reactions tend toward 
completion, CO and N2 dissociations become predominant; It is these two reactions 
which a r e  largely responsible for the steep increase in viscosity and frozen conductivity 
and for the second set  of peaks in  reactive conductivity, total conductivity and Prandtl 
number. Although argon does not react to any appreciable extent, it does affect the quan­
titative character of the transport properties both through molecular interaction and 
through its influence on the equilibrium composition. 

Although no approximate calculations a r e  given for this mixture, it is evident from 
the two preceding examples that use of approximate equations would lead to serious e r r o r  
in  the total conductivity, and hence, the Prandtl number. This observation would b e  espe­
cially t rue in  the low temperature range where C@ and 02 dissociate simultaneously. 

To the authors' knowledge, transport properties for this mixture have not been 
computed previously; hence, no comparisons a r e  possible. 
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Comparisons of the Transport Properties of Air, Carbon Dioxide, 

and the Mars Model Atmosphere 

In this section, the three mixtures are compared on the basis of the full-equation 
calculations of viscosity, total conductivity, and Prandtl number. For convenience, air 
is adopted as a standard and the properties of carbon dioxide and the Mars model atmo­
sphere a r e  discussed in  t e rms  of their deviation from the corresponding air properties. 
Attention is restricted to a pressure of 1.0 atm because similar results hold for the other 
pressures. 

Figure 47 compares the viscosities of the three mixtures. The viscosities of air 
and carbon dioxide are quite similar in  magnitude, the viscosity of the latter never devi­
ating from that of the former more than 6 percent. The viscosity of the Mars model 
atmosphere always lies above that for both air and carbon dioxide, but its deviation from 
that of the former is always less than 12 percent. There are ,  of course, distinctive fea­
tures in  the fine' details of the temperature variations, such as the characteristic r i s e s  
associated with the occurrence of chemical reactions. 

The curves for air and carbon dioxide a r e  expected to be similar after appreciable 
dissociation of carbon dioxide, because the collision integrals and thermodynamic prop­
erties of the remaining atoms and diatomic species are similar. The higher viscosity of 
the M a r s  model atmosphere is due mainly to the large amount of argon present in  this 
mixture. 

Figure 48 illustrates the tremendous differences in the total conductivity of the 
mixtures. In the temperature region between 2000° K and 4000° K, the conductivity of 
C02 deviates from that of air by as much as 180 percent and between 5000° K and 6000° K 
by as much as 70 percent. For the M a r s  model atmosphere, deviations range from about 
95 percent near 25000 K to about 34 percent near 5500° K. 

As shown in figure 49, these large differences in total conductivity do not influence 
the Prandtl numbers as much as one might expect. The reason for this, of course, is the 
analogous behavior of the specific heat and total conductivity of the individual mixtures. 
The deviation of the Prandtl number of C02 from that for air ranges from about 12 per­
cent to 20 percent. The maximum deviation of the Prandtl number of the Mars model 
atmosphere from that of air is about 10 percent. According to Horton and Zeh (ref. 41), 
such difference can be significant in  problems such as blunt-body stagnation-point heat 
transfer. 

It is noteworthy that Prandtl number comparisons based on the second approxima­
tion would differ greatly from those shown in figure 49. In particular, deviations of sev­
eral hundred percent would be observed. 
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CONC LUSIONS 

On the basis of the foregoing analysis, the following conclusions are justified: 

1. Neglect of coupling terms in  reactive-conductivity calculations for mixtures 
containing C02 can induce order of magnitude e r ro r s  in  total conductivity, and hence, 
large e r ro r s  in  Prandtl number. 

2. For the mixtures considered, second approximations give reasonable accuracy 
(3percent deviation from full-equation calculations) for viscosity and translational 
thermal conductivity. 

3. There exists a definite need for accurate interaction potentials for carbon-atom 
and carbon-molecule interactions. The accuracy of high-temperature transport proper­
ties of mixtures containing carbon elements and/or compounds must be regarded as 
uncertain until such potentials become available. However, the present calculations are 
regarded as the best presently available. 

4. Accurate mixture specific heat is essential to accurate Prandtl number 
calculations.. 

It should be emphasized that conclusions 1and 2 are independent of conclusion 3 
because carbon-other-particle interaction potentials were used consistently in  all 
calculations. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., July 1, 1969. 
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APPENDIX A 

ORTENTATION-AVERAGED POTENTIALS FOR C02 INTERACTIONS 

The purpose of this appendix is to develop high-temperature potentials for binary 
interactions of C e  with atoms, diatomic molecules, and other C02 molecules. The 
basic idea is to construct the potential for two interacting particles from known potentials 
for interactions of atoms comprising the particles. This leads directly to an orientation-
dependent particle potential which is then averaged over all possible orientations to yield 
an effective potential dependent only on the center-of-mass separation of the particles. 
Appropriate equations for atom-diatomic-molecule and diatomic-molecule-diatomic­
molecule potentials are presented i n  reference 19. 

The procedure incorporates the following simplifying assumptions (ref. 19): 

(1) Each molecule can be treated as a rigid structure with ground-state dimensions. 

(2)Atomic interactions a r e  independent and each atomic interaction potential has 
the form 

Cp = Ae-aR (Al) 

where R is the interatomic separation distance. 

(3) All molecular orientations a r e  equally probable. 

Sketch 1 shows appropriate coordinate systems and nomenclature for the establish­
ment of the interaction potential for  the encounter of molecule AB with a symmetric, tri­
atomic linear molecule DCD. For a particular configuration, assumption (2)implies that 

Y1 

Sketch 1 
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where each te rm has the form given in  equation (Al). Subscripts 1 and 2 a r e  affixed 
to the D atoms because the distances from these atoms to atoms A and B generally differ, 
and hence, the potentials also differ; that is, in  general, @AD, # @m2and 

@BD1 @BD2' 

The orientation-averaged potential, @(r)is related to @(r,81,wl,82,w2) by 

Note that no Boltzmann weighting factor occurs in  this equation; this is consistent with 
assumption (3). 

When equation (A2) is substituted into equation (A3), one finds that the six resulting 
integrals are quite complex and difficult to integrate. However, one can easily demon­
strate  that the integral of @AC has the same form as that for @BC and also that the 

and @BD2 
have the same form. Hence @(r)canintegrals of 1' @m29@ B D ~ ,  

easily be found once the averaged potential for the A-C and A-D1 interactions are known. 

.. The averages of GAC and 
must obviously be independent of the par­
ticular choice of coordinate systems. 
Sketch 2 shows a new coordinate system 
which leads to marked simplifications in  
the integrals. Denoting the averaged V a l ­

ues of @AC and by (@AC) and 
, respectively, one obtains B 

Sketch 2 

where 
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Carrying out the indicated operations yields 

- amdA cosh aADdA sinh amdD00 

- amdD COSh 

Averages for the remaining atomic potentials in equation (A2) can now be obtained by 
changing the subscripts appropriately in equations (A8) and (A9). 

U s e  of these resul ts  leads directly to the following potentials for the CO2-NO, 
CO2-02, and c 0 2 - N ~interactions: 

A ~ ~ ~ - ~ N c ~  A m e - a m r  
@(COz-NO) = r k N c r+ 1) sinh (aNCdN) - aNCdN cosh (aNCdN1+-

a&dor 
k m r  + l) sinh (amdO) - Amdo cosh 

NC~N'  

2ANOe-aNor 
+ FNO'+ 2) Sinh (.Nod.) Sinh (aNodD) - aNOdN cash (aNodN) sinh (aNod,) - aNodD cash (aNodD) sinh (aNodN]

a&OdNdDr 

2Ame-amr 
+ -[ao,y + 2) sinh (aoodo) sinh (amdD) - aOOdO cosh (amdo) sinh (amdd - amdD cosh (amdD) sinh (aoodoj

a&,dodDr 

2AOCe-aOCr 4Ame-a00P 
k O C r+ 1) sinh (aOCdg) - aOCdO cosh (aOCdd] + Emr+ 2) sinh (amdo) sinh (a,d,$

a&dor a&dodDr 
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In each of these equations dD denotes the length of the\C-O bond in  the C02 molecule, 

The meaning of the other d symbols depends upon the particular interaction. For 
example, in  equation (A10) dN denotes the distance of the N atom from the center of 
mass of the NO molecule whereas in  equation (A12) dN denotes the distance of the 
N atom from the center of mass of the N2 molecule. 

By similar analyses one can also establish the following potentials: 

+p02-CoZ) = ACCe-accr 

+ 1> Sinh (awdD) - amdD cosh awdD( 1  
9 (aOOdD) 

sinh@OOdDI 
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-aWr 
@(c02-0> = A w e  + - aoodD cosh 
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APPENDIX B 

ESTABLISHMENT OF EQUATIONS FOR VISCOSITY, TRANSLATIONAL 

CONDUCTMTY, AND REACTIVE CONDUCTIVITY 

In this appendix, the expressions for viscosity and translational thermal conductiv­
ity resulting from the first approximation of first-order Chapman-Enskog kinetic theory 
are cast into convenient forms for numerical computation. A convenient form for the 
reactive contribution to the thermal conductivity is also derived, and a first and second 
approximation for viscosity and translational conductivity and a first approximation for 
the reactive conductivity a r e  developed. 

The viscosity of a v-component gas mixture is given by (ref. 7) 

H1l H12 . . . H l v  x1 

�l12 H22 . . . v x2 

. . .  Hvv 

x1 x2 . . .  XV 0 

where ]Hijl denotes the determinant of the Hij elements defined by 
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Here vi, the viscosity of species i, is given by 

with --(2'2) expressed in  units of i2.The binary diffusion coefficient of species iQ 
and j ,  Dij, is given by 

(B5) 

where $"' is also expressed in  i2. 

It is convenient to arbitrari ly define a reference viscosity qo by 

This particular choice was made solely because it leads to convenient numerical values 
for the dimensionless viscosity q*. Dividing equation (Bl) by equation (B6) and substi­
tuting equations (B4) and (B5) into equations (B2) and (B3) give 
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where 
4292)  2 V* 1.2aii 41,1)Hii = d"l xi + 2 xixjcl,ijaij 

j = l  

The reasons for defining C in this fashion are twofold. First, they can be computed 
once at the beginning of the calculations and used throughout the whole range of tempera­
tures and pressures. (Recall that A:j is taken as being constant.) Second, some of 
these same quantities occur naturally in conductivity equations. Although the units are* not shown in  equations (B8) and (B9), it is easily verified that Hg  (= qoHii) and Hij
(= qOHij) are actually nondimensional. 

According to reference 7, equation (B7) can be expanded as 

The first term in this expansion will be referred to as the first approximation q; and 
the first two.terms will be referred to as the second approximation 'A. Thus 
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The translational thermal conductivity can be treated in  a completely analogous 
fashion. According to Muckenfuss and Curtiss (ref. 13), the governing equation is 

L1l L12 . . .  L l v  x1 

L12 L22 . . .  v x2 

L l v  v . . .  Lvv 	 XU 

0 

where 

In equation (B17), Xi, the thermal conductivity of pure component i, is defined by 

qiwhere 4 2  ,a is expressedin A02. 
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After nondimensionalizing A t  with a reference conductivity defined by 

and using equation (B5) to eliminate Dij, equation (B16) can be expressed as 

LT2 . . . x1 

L i z  . . . x2 

Lav . . . XV 

x2 . . .  0 

where 

l5 +-25 - 2 *  + 4 Y M j G j  
2-Mi  4 Mj J 1J -

C4,ij = Mi + Mj 

* With the assumed constancy of Arj and Bij, this formulation proves especially con­
venient for numerical evaluation. 
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Equation (B21) can be expanded as 

The first approximation is defined as 

and the second approximation as 

According to Butler and Brokaw (ref. ll),the reactive contribution to the conduc­
tivity of a v-component system whose equilibrium composition is described by t inde­
pendent chemical reactions has the form 

AH1 E12 . . . E It 

AH2 E 12 E22 . . . E2t 
. . .I :  . . .  
. . .  

1 AHt E l t  Eat . . . Ett 

where AHi is the enthalpy of reaction of the ith independent reaction and 
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E & =  5' 2 - nkmxj)2 + 2 2t 2 A .3 
j=t+l m=j+l xjxm j=t+l p= l  

"kj PJ xj 

Pfk 
t 2 

(xj + "kjXk) 

p=l j=t+l xjxk 

V 

+ C ("kj Ai j  + nij Akj) - Aik (i,k = 1,2,...,t) 
j=t+l 

(B31) 

RT 
=-PDij 

Dividing equation (B29)by Xo and introducting equation (B5)for Dij yield 

0 AH; AH; . . . 

AH; E ; ~  ET2 . . . 

AH; E i 2  E f 2  . . . 
. . .  
. . .  
. . .  

where 
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* 
E & =  F1 f A & j (  nkjxm - nkmxj)2 + f 2 * xp 

j=t+l  m=j+l Xjxm j=t+l p=l  
"kj Apj ­

xj 

t 
xp + 

+ p=11AgkmG 
P#k 

V 


22 ACj 
(x;j + "kjXk) 

(k = 1,2, ...,t) 
j=t+l xjxk 

0335) 

(i,k.= 1,2	,...,t) 

0336) 

When equation (B33) is expanded, the first approximation is 
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TABLE 1 

BINARY INTERACTIONS FOR DISSOCIATING CO2-Na-Ar MIXTURES WITHOUT IONIZATION 

C%-C02 CO2-02 C02-N2 C02-NO C e - C O  co2-0  E02-i-J E9-9 C a - A r  


(02-02) (02-N2) 02”O 0 2 - c o  (02-4 p 2 - N 3  [02-c3 02-Ar 


p 2 - N ~ )  @-No) N2-CO (N2-0) (Nz-N) N2-C N2-Ar 


(NO-NO) NO-CO (NO-0) NO-N NO-C NO-Ar 


co-co co-0 CO-N co-c CO-Ar 


( 0-9 (0-4 0-c 0-Ar 

N-C N-Ar 

c-c C-Ar 

Ar-Ar 

Parentheses around a pair designate that its interaction potential has been considered previously and that the 
corresponding collision integrals can be obtained from reference 19. 

Brackets around a pair mean that an accurate interaction potential is not critical because one or  both of the 
mole fractions are always small. 
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TABLE 2 


INTERACTION POTENTIALS FOR DISSOCIATING C9-Nz-Oz-Ar MIXTURES 


I Interaction 

Ico-Btomor molecule 

..T 


.I 


COz-NOr 
COZ-Ar 

c o 2 - 0  

I C-No 

Potential (r in  A) Pemperature range Reference 

See reference 19 19 

Use NZ-atom or molecule potentials 

..~ 

Exp-6: a = 15.5, e/k = 127.5' K, L O W  19, 25 
rm = 3.796 A 

-. ­~. 

1360ev High 29 
$3.34 

Exp-6: a = 15.5, c/k = 111.6' K, LOW 25 

Comments 

Averages of tabulated values w8 
used for minor interactions 

See section "Carbon monoxide 
interactions" 

Obtained from viscosity data ar 
combination rules 

Scattering potential 

Obtained from viscosity data ar 
combination rules 

Scattering potential 

See section "Argon interactions 

Obtained from equations (10)
and (11) by combination rule 

Obtained indirectly from scat­
tering data 

Obtained from Scattering data 

Obtained from viscosity data 

Obtained by averaging 

Obtained from diffusion dah 

Obtained by averaging' equa­
tion (11)used for /(O-O) 

Obtained from diffusion data 

Obtained b averaging' equa­
tions (14and (15) uked for 
+(N-N) and @(N-0) 

Obtained from viscosity data a 
combination rules 

obtained b averaging' e ua 
tions (115 (14) and118 U ~ 
for $(O-b), b(N-N), and 

rm = 3.938 A 

760 e v  
.7.78 

L42.4 eV 
"7.10 
~-. .~ -

Zxp-6: 	 a = 14, c/k = 123.2' K, 
rm = 3.866 A 

$2300e'4.46r eV 
_- - ~­

j-12: u = 3.897 A, e/k = 213' K 

j78,4e-2. 166r eV 

Zxp-6: a = 17, c/k = 255' K, 
rm = 3.616 A-_ .- ~-

BO.^^-^.^^^^ ev 
- . 

Exp-6: 	 a = 17, e/k = 184' K, 
rm= 3.782 A 

j74,5,-2.416r eV 

- -.-

High 28 

All 18, 19, 20 

All 18, 20 

All 28 

LOW 25 

High 20 

LOW 32 

-

High Appendix A 

LOW 31 

High Appendix A 

LOW 31 

.- - .  

Appendix A 

~ . __ 
5-12: u = 3.748 A, 6/k = 139.2' K LOW 7 

. -

High Appendix A 

@(N- 1 __ ~-.- ~-

L O W  7 Obtained from viscosity data I 
combination rules 

- .. - - .. -

High Appendix A Obtained by averaging 
-- _ _  . 

Au Appendix A Obtained by averaging equa­
tion (11) used for &O-O) 

All 18, 19 

~ .. 

262.2e-2'670r eV All 18 

Use N-N potential All 

. - .. - -

Obtained b averaging' equa­
tions (145 and (15) u&d for 
d N - N  and @(N-O) 

Obtained by averaging equa­
tion (14)used for &N-C)
and +(O-C) 

__ -
See section "Carbon interactioi 

See sections 'Carbon interactii 
and "Carbon dioxide interacl 

.- -

II Remaining Use N-interactions 
C-Interactions 
I.. 

results occurred. 
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TABLE 3 

COLLISION INTEGRALS 

1 L - A r  AT-0 2  Ar-0 Ar-N I 
I 

Ar-NO co -02
~ 

T, 
O K  ~ ( 1 9 1 )  #A $1) ’2) ’2) p ) # A  -(2,2)2 : $1’1) p ) ’ ’ 

A2 ’ A2 A2 ii2 A2 ’ A2 ;i2 I A2 ’ ;i2 ’ A2 ;i2 ’ ii2 
~ ~ 

1000 8.73 9.91 8.94 9.95 9.40 10.49 6.98 8.23 6.90 8.39 9.03 10.54 9.60 10.56 
1500 7.50 8.55 8-22 9.33 8.56 9.66 6.35 7.54 6.16 7.48 8.29 9.72 8.94 9.80 
ZOO0 6.92 7.95 7.61 8.84 7,ao 9.00 5.93 7.06 5.67 6.89 7.78 9.17 a. 50 9.38 
2500 6.48 7.60 7.13 8.41 7.18 8.48 5.61 6.70 5.33 6.48 7.41 a. 74 8.20 9.07 
3000 6.20 7.29 6.18 8-04 6.75 8.08 5.36 6.42 5.08 6.18 7.10 8.41 1-98 8.86 
3500 6.04 7.03 6.54 7.75 6.48 7.78 5.15 6. 18 4.83 5.88 6.85 a. 12 7. 80 8.68 
POOO 5.88 6.82 6.35 7.52 6.27 7.53 4.97 5.98 4.67 5.68 6.63 7.88 7.65 8.52 
1500 5.76 6.65 6.17 7.31 6.08 7.30 4.82 5.80 4.51 5.49 6.45 1.68 7.51 8.38 
5000 5.65 6.53 6.02 7.13 5.92 7.10 4.68 5.65 4.38 5.32 6.28 7.49 7.38 8.24 
5500 5.55 6.42 5.88 6.97 5.78 6.94 4.56 5.52 4.27 5.19 6.14 7.33 7.26 8.13 
5000 5.46 6.32 5.76 6.82 5.65 6.78 4.45 5.39 4.16 5.06 6.01 7. 18 7.14 8.03 
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Figure 1.- Continued. 
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Figure 1.- Continued. 
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Figure 1.- Continued, 
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Figure 1.- Concluded. 
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Figure 2.- Equilibrium mole fractions of high-temperature C02 for several pressures. 
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Figure 2.- Continued. 
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Figure 2.- Continued. 
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Figure 2.- Continued. 
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Figure 2.- Concluded. 
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F igure 3.- Equ i l i b r i um mole fract ions of M a r s  model atmosphere (43% CO2, 25% h,32% A r  (by vol.)) for several pressures. 
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Figure 3.- Continued. 
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Figure 3.- Continued. 
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Figure 3.- Concluded. 
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Figure 5.- Variation of nondimensional mixture specific heat of C02 with temperature. 
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Figure 6.- Variation of nondimensional mixture specific heat of Mars model atmosphere with temperature. 
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Figure 7.- Variation of nondimensional species specific heat with temperature. 
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Figure 8.- Variation of nondimensional species enthalpy with temperature. 
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Figure 8.- Continued. 

72 


P i l l  




100 


80 

70 

* 
hi 


50 

LO 


30 

20 

10 


A r  

0 
1 2 3 4 5 6 7 8 x lo3 

Temperature,OK 


(c) C, N, 0, NO, and Ar 

Figure 8.- Concluded. 

73 


11111 111111111 I I I  1111111 IIII 1 1 1  1111111111111111 



3.6 

3 -2  

2.8 

2 e 4  

2.0 

1.6 

1.2 


.% 

0 . 4  
2.0 2.1 2.2 2.3 2.4 2.5 2.6 

0 
Separation dis tance,  r, A 

Figure 9.- Comparison of high-temperature potentials for Ar-Nz and Ar-CO interactions. 

74 


t 




9.0 

8.6 

8.2 

7.8 

4 
0 
u 6.2 

5.8 

5.4 

5 .O 1 1I .. . . . .  - . !  - ! - .  ~~ ~~ ! I 

1 2 3 4 5 6 7 8 x lo3 

Temperature, OK 

Figure 10.- Comparison of dl’l)computed from high-temperature Ar-N2 and Ar-CO potentials. 

75 




d 

11.0 


10.6 


10.2 


9 -8 

N
04 


9*4  
h 

N.. Ar-N* 

.. 
d 
(d
k 

M \\ 1 Ar-co 

d 
0 8.6 
.d 
m 
.d 
+ 
0 
u 

8.2  

7.8 

7 * 4  

17.0 
1 2 3 4 5 6 7 8 x 103 

Temperature, OK 


Figure 11.- Comparison of computed from high-temperature Ar-NZ and Ar-CO potentials. 
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Figure 14.- Collision integral ratio A[ for Lennard-Jones 6-12 and modified Buckingham exp-6 potentials. 
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Figure 15.- Collision integral ratio 6; for Lennard-Jones 6-12 and modified Buckingham exp-6 potentials. 
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Figure 16.- Coll ision integral ratios for t he  exponential repulsive potential. 
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Figure 17.- Illustration of graphical method of finding for Ar-02 interaction. 
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Figure 21.- Variation of nondimensional viscosity of a i r  w i th  temperature. 
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Figure 22.- Variation of nondimensional frozen conductivity of air  with temperature. 
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Figure 23.- Variation of nondimensional reactive conductivity of a i r  wi th temperature, 

88 




2.0 

1.8 


1.6 


1.4 

1.2 


x* 1.0 

.8 


.6 


.4 


.2 


0 	 1 .  ~. ..I . .. .. ! ! ~-1 1 1 

1 2 3 4 5 6 7 8 x lo3 


Temperature, OK 

Figure 24.- Variation of nondimensional total condudivity of a i r  with temperature. 
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F igu re  25.- Var ia t i on  of P rand t l  number  of a i r  w i t h  temperature,  
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Figure 26.- Comparison of full-equation calculation of nondimensional viscosity of a i r  with approximate calculations 
and previous results for p = 1 atm. 
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Figure 27.- Comparison of full-equation calculation of nondimensional frozen conductivity of a i r  with approximate calculations 
and previous results for p = 1 atm. 
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Figure 28.- Comparison of full-equation calculation of nondimensional reactive conductivity of a i r  with approximate calculations 
and previous results for p = 1 atm. 

93 




1.2 


1.1 


1.0 


.9 

.8 

.7 

x* .6 

.5 

*.!+ 

A 

.3 

.2 

.1 


Temperature, OX 


Figure 29.- Comparison of full-equation calculation of nondimensional total conductivity of a i r  with approximate calculations 
and previous results for p = 1 atm. 
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Figure 31.- Comparison of full-equation and approximate calculations of Prandtl number of a i r  wi th modified data of Yos for p = 1 atm. 
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Figure 32.- Variation of nondimensional viscosity of CO;, with temperature. 
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Figure 33.- Variation of nondimensional frozen conductivity of C02 wi th  temperature. 
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Figure 34.- Variation of nondimensional reactive conductivity of CO2 with temperature. 
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Figure 36.- Variation of Prandtl number of CO2 with temperature. 
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Figure 37.- Comparison of full-equation calculation of nondimensional viscosity of C02 with approximate calculations 
and previous results for p = 0.1 atm. 
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Figure 38.- Comparison of full-equation calculation of nondimensional frozen conductivity of Co;! with approximate calculations 
and previous results for p = 0.1 atm. 
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Figure 39.- Comparison of full-equation calculation of nondimensional reactive conductivity of C02 with approximate calculations 
and previous results for p = 0.1 atm. 
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Figure 40.- Comparison of full-equation calculation of nondimensional total conductivity of C@ with approximate calculations 
and previous results for p = 0.1 atm. 
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Figure 41.- Comparison of full-equation calculation of Prandtl number of CO2 with approximate calculations , 
and previous results for p = 0.1 atm. 
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Figure 42.- Variation of nondimensional viscosity of the Mars model atmosphere with temperature. 

107 




.08 


.07 

.06 

.05 

.04 

1 2 3 4 5 6 7 8 


Temperature, OK 

Figure 43.- Variation of nondimensional frozen conductivity of the Mars model atmosphere with temperature. 
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Figure 44.- Variation of nondimensional reactive conductivity of the Mars model atmosphere with temperature. 
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Figure 45.- Variation of nondimensional total conductivity of the Mars model atmosphere with temperature. 
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Figure 46.- Variation of Prandtl number of the  Mars model atmosphere with temperature. 
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Figure 47.- Comparison of nondimensional viscosities of air, CQ, and the  Mars model atmosphere for p = 1.0 atm. 
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Figure 48.- Comparison of nondimensional total conductivities of air, CQ, and the  M a r s  model atmosphere for p = 1.0 atm. 
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Figure 49.- Comparison of Prandtl numbers of air, CO2, and the  Mars model atmosphere for p = 1.0 atm. 
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